A differentiation formula for spherical Bessel functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2005 J. Phys. A: Math. Gen. 381687
(http://iopscience.iop.org/0305-4470/38/8/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.101
The article was downloaded on 03/06/2010 at 04:10

Please note that terms and conditions apply.

A differentiation formula for spherical Bessel functions

J Boersma ${ }^{1,3}$ and M L Glasser ${ }^{2}$
${ }^{1}$ Department of Mathematics and Computing Science, Eindhoven University of Technology, Eindhoven, The Netherlands
${ }^{2}$ Department of Physics and Center for Quantum Device Technology, Clarkson University, Potsdam, NY 13699-5820, USA

Received 5 October 2004, in final form 23 November 2004
Published 9 February 2005
Online at stacks.iop.org/JPhysA/38/1687
Abstract
The differentiation formula
$\left(1-\frac{\sqrt{z^{2}+a^{2}}}{z} \frac{\mathrm{~d}}{\mathrm{~d} z}\right)^{n}\left[z^{n-1 / 2} K_{n-1 / 2}(z)\right]=\left(z+\sqrt{z^{2}+a^{2}}\right)^{n} z^{-1 / 2} K_{1 / 2}(z)$
is derived, where $K_{n-1 / 2}(z)$ is a modified spherical Bessel function and a is an arbitrary constant.

PACS number: 02.30.Gp

Introduction

We consider the class of modified spherical Bessel functions

$$
\begin{equation*}
f_{n}(z)=z^{n-1 / 2} K_{n-1 / 2}(z), \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

and the differential operator $D=(1 / z) \mathrm{d} / \mathrm{d} z$. The function $K_{n+1 / 2}(z), n=0,1,2, \ldots$, is expressible in terms of elementary functions and $K_{-1 / 2}(z)=K_{1 / 2}(z)$; see Watson [1, form 3.71(8), (12)]. The differentiation formula

$$
\begin{equation*}
D^{k} f_{n}(z)=(-1)^{k} f_{n-k}(z), \quad D^{n} f_{n}(z)=(-1)^{n} f_{0}(z) \tag{2}
\end{equation*}
$$

is well known [1, form 3.71(5)].
In this note we generalize the second formula (2) to the following relation:
Theorem. For $n=0,1,2, \ldots$ one has

$$
\begin{equation*}
(1-x D)^{n} f_{n}(z)=(x+z)^{n} f_{0}(z) \tag{3}
\end{equation*}
$$

with $x=\sqrt{z^{2}+a^{2}}$ and a arbitrary.
The second formula (2) is the limiting case $a \rightarrow \infty$ of (3). As an application relation (3) is used to evaluate the integral I_{n} in (15).
${ }^{3}$ Professor Boersma passed away during the completion of this paper.

Derivation

We begin by defining the quantity
$A(n, k)=(2 k-1)!!\binom{n}{2 k}, \quad n=0,1,2, \ldots, \quad k=0,1,2, \ldots$,
for which $A(n, 0)=1, A(n, k)=0$ for $k>n / 2$. It is easily verified that $A(n, k)$ satisfies the recurrence relation
$A(n+1, k)=(n+2-2 k) A(n, k-1)+A(n, k), \quad k=0,1,2, \ldots,[(n+1) / 2]$
with $A(n,-1)=0$. In fact, expression (4) was found by solving (5).
Lemma 1. For $n=0,1,2, \ldots$ one has

$$
\begin{equation*}
(x D)^{n}=\sum_{k=0}^{[n / 2]} A(n, k) x^{n-2 k} D^{n-k} \tag{6}
\end{equation*}
$$

Proof. We proceed by induction. Relation (6) is easily seen to hold true for $n=0,1$. Suppose (6) is valid for some $n>0$. Then

$$
\begin{align*}
(x D)^{n+1} & =(x D) \sum_{k=0}^{[n / 2]} A(n, k) x^{n-2 k} D^{n-k} \\
& =\sum_{k=0}^{[n / 2]+1}(n+2-2 k) A(n, k-1) x^{n+1-2 k} D^{n+1-k}+\sum_{k=0}^{[n / 2]} A(n, k) x^{n+1-2 k} D^{n+1-k} \tag{7}
\end{align*}
$$

where in the sum in the second line of (7) k has been replaced by $k-1$ and the term $k=0$, which is 0 , has been added.

Now, if n is even, $[n / 2]=[(n+1) / 2]$ and the term $k=[n / 2]+1$ in the sum in the second line of (7) vanishes due to the factor $n+2-2 k$. If n is odd, $[n / 2]+1=[(n+1) / 2]$ and we add the term $k=[n / 2]+1$ to the sum in the third line of (7); this term vanishes because $A(n,(n+1) / 2)=0$. By use of the recurrence relation (5) in (7), thus modified, we find

$$
\begin{equation*}
(x D)^{n+1}=\sum_{k=0}^{[(n+1) / 2]} A(n+1, k) x^{n+1-2 k} D^{n+1-k}, \tag{8}
\end{equation*}
$$

in both cases of n even or odd. This completes the proof of relation (6) for all $n=0$, $1,2, \ldots$..

Lemma 2. For $n=0,1,2, \ldots$ one has

$$
\begin{equation*}
(1-x D)^{n}=\sum_{m=0}^{n}\binom{n}{m}(-1)^{n-m} x^{n-m} \sum_{k=0}^{[m / 2]} A(m, k) D^{n-m+k} \tag{9}
\end{equation*}
$$

Proof. By the binomial theorem

$$
(1-x D)^{n}=\sum_{l=0}^{n}\binom{n}{l}(-1)^{l}(x D)^{l}
$$

so, by lemma 1 ,

$$
(1-x D)^{n}=\sum_{l=0}^{n} \frac{n!}{(n-l)!}(-1)^{l} \sum_{k=0}^{[l / 2]} \frac{(2 k-1)!!}{(2 k)!(l-2 k)!} x^{l-2 k} D^{l-k},
$$

where the binomial coefficients have been written out explicitly.

Next, we re-arrange the sum in terms of $m=l-2 k$ and k to find

$$
(1-x D)^{n}=\sum_{m=0}^{n}\binom{n}{m}(-1)^{m} x^{m} \sum_{k=0}^{[(n-m) / 2]} A(n-m, k) D^{m+k},
$$

which on replacing m by $n-m$ gives (9).
Proof of theorem. We first note that [1, form 3.71(1)]

$$
K_{n-1 / 2}(z)-\frac{2 n-3}{z} K_{n-3 / 2}(z)=K_{n-5 / 2}(z)
$$

giving

$$
\begin{equation*}
f_{n}(z)-(2 n-3) f_{n-1}(z)=z^{2} f_{n-2}(z) \tag{10}
\end{equation*}
$$

On the one hand, from lemma 2 and the first formula (2) we have

$$
(1-x D)^{n} f_{n}(z)=\sum_{m=0}^{n}\binom{n}{m} x^{n-m} S_{m}(z)
$$

with

$$
\begin{equation*}
S_{m}(z)=\sum_{k=0}^{[m / 2]}(-1)^{k} A(m, k) f_{m-k}(z) \tag{11}
\end{equation*}
$$

On the other hand,

$$
(x+z)^{n} f_{0}(z)=\sum_{m=0}^{n}\binom{n}{m} x^{n-m} z^{m} f_{0}(z)
$$

Therefore, we must show that

$$
\begin{equation*}
S_{m}(z)=z^{m} f_{0}(z), \quad \text { for } \quad m=0,1,2, \ldots \tag{12}
\end{equation*}
$$

The latter relation is easily verified for $m=0,1$.
For $m \geqslant 2$ we have

$$
A(m, k)-A(m-2, k)=(2 m-2 k-1) A(m-2, k-1) .
$$

Inserting this into (11) we find

$$
\begin{aligned}
S_{m}(z)= & \sum_{k=0}^{[(m-2) / 2]}(-1)^{k} A(m-2, k) f_{m-k}(z) \\
& +\sum_{k=0}^{[m / 2]}(-1)^{k}(2 m-2 k-1) A(m-2, k-1) f_{m-k}(z)
\end{aligned}
$$

In the second sum we replace k by $k+1$ and obtain

$$
S_{m}(z)=\sum_{k=0}^{[(m-2) / 2]}(-1)^{k} A(m-2, k)\left[f_{m-k}(z)-(2 m-2 k-3) f_{m-k-1}(z)\right]
$$

which, by means of (10), simplifies to

$$
S_{m}(z)=z^{2} \sum_{k=0}^{[(m-2) / 2]}(-1)^{k} A(m-2, k) f_{m-k-2}(z)=z^{2} S_{m-2}(z)
$$

Consequently, (12) follows by iteration, which completes the proof of the theorem.

Discussion

By replacing z by $-\mathrm{i} z$ in (3) it follows that for the spherical Hankel functions

$$
\begin{equation*}
g_{n}(z)=z^{n-1 / 2} H_{n-1 / 2}^{(1)}(z) \tag{13}
\end{equation*}
$$

one has the differentiation formula

$$
\begin{equation*}
(1+y D)^{n} g_{n}(z)=(y-\mathrm{i} z)^{n} g_{0}(z) \tag{14}
\end{equation*}
$$

with $y=\sqrt{a^{2}-z^{2}}$ and a arbitrary.
As an application of (3) we present an evaluation of the integral

$$
\begin{equation*}
I_{n}=\int_{0}^{\infty} \cos (a x-n \arctan x) K_{n}\left(u \sqrt{1+x^{2}}\right) \mathrm{d} x \tag{15}
\end{equation*}
$$

Starting from [1, form 13.47(2) with $\mu=-1 / 2, v=n]$ expressed in the form

$$
\begin{equation*}
J_{n}=\int_{0}^{\infty} \cos (a x) \frac{K_{n}\left(u \sqrt{1+x^{2}}\right)}{\left(1+x^{2}\right)^{n / 2}} \mathrm{~d} x=\sqrt{\frac{\pi}{2}} u^{-n} f_{n}\left(\sqrt{u^{2}+a^{2}}\right), \tag{16}
\end{equation*}
$$

we have

$$
\begin{align*}
I_{n} & =\frac{1}{2} \int_{-\infty}^{\infty}(1-\mathrm{i} x)^{n} \mathrm{e}^{\mathrm{i} a x} \frac{K_{n}\left(u \sqrt{1+x^{2}}\right)}{\left(1+x^{2}\right)^{n / 2}} \mathrm{~d} x \\
& =\left(1-\frac{\partial}{\partial a}\right)^{n} J_{n}=\sqrt{\frac{\pi}{2}} u^{-n}\left(1-\frac{\partial}{\partial a}\right)^{n} f_{n}\left(\sqrt{u^{2}+a^{2}}\right) \tag{17}
\end{align*}
$$

If we now write $z=\sqrt{u^{2}+a^{2}}$, then $\partial / \partial a=a D$ and by (3)

$$
\begin{equation*}
I_{n}=\sqrt{\frac{\pi}{2}} u^{-n}(a+z)^{n} f_{0}(z)=\frac{\pi}{2}\left(\frac{a+\sqrt{u^{2}+a^{2}}}{u}\right)^{n} \frac{\mathrm{e}^{-\sqrt{u^{2}+a^{2}}}}{\sqrt{u^{2}+a^{2}}} \tag{18}
\end{equation*}
$$

The integral I_{n} appears, in various forms, in diffraction theory and other areas; see [2, 3]. The evaluation in [3], which is believed to be the earliest one, is more complicated.

Acknowledgment

MLG thanks Dr F Goodman for bringing the integral I_{n} to his attention, and the NSF for support under Grant DMR-0121146.

References

[1] Watson G N 1958 A Treatise on the Theory of Bessel Functions 2nd edn (Cambrige: Cambrige University Press)
[2] Bertsch G F, Esbensen H and Reed B W 1998 Phys. Rev. B 5814031
[3] Reiche F 1953 On diffraction by an infinite grating Research Report EM-61, Division of Electromagnetic Research, Institute of Mathematical Sciences, New York University

