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Abstract
The differentiation formula(

1 −
√

z2 + a2

z

d

dz

)n

[zn−1/2Kn−1/2(z)] = (
z +

√
z2 + a2

)n
z−1/2K1/2(z)

is derived, where Kn−1/2(z) is a modified spherical Bessel function and a is an
arbitrary constant.

PACS number: 02.30.Gp

Introduction

We consider the class of modified spherical Bessel functions

fn(z) = zn−1/2Kn−1/2(z), n = 0, 1, 2, . . . , (1)

and the differential operator D = (1/z) d/dz. The function Kn+1/2(z), n = 0, 1, 2, . . . ,

is expressible in terms of elementary functions and K−1/2(z) = K1/2(z); see Watson
[1, form 3.71(8), (12)]. The differentiation formula

Dkfn(z) = (−1)kfn−k(z), Dnfn(z) = (−1)nf0(z), (2)

is well known [1, form 3.71(5)].
In this note we generalize the second formula (2) to the following relation:

Theorem. For n = 0, 1, 2, . . . one has

(1 − xD)nfn(z) = (x + z)nf0(z), (3)

with x = √
z2 + a2 and a arbitrary.

The second formula (2) is the limiting case a → ∞ of (3). As an application relation (3)
is used to evaluate the integral In in (15).

3 Professor Boersma passed away during the completion of this paper.

0305-4470/05/081687+04$30.00 © 2005 IOP Publishing Ltd Printed in the UK 1687

http://dx.doi.org/10.1088/0305-4470/38/8/005
http://stacks.iop.org/ja/38/1687


1688 J Boersma and M L Glasser

Derivation

We begin by defining the quantity

A(n, k) = (2k − 1)!!

(
n

2k

)
, n = 0, 1, 2, . . . , k = 0, 1, 2, . . . , (4)

for which A(n, 0) = 1, A(n, k) = 0 for k > n/2. It is easily verified that A(n, k) satisfies the
recurrence relation

A(n + 1, k) = (n + 2 − 2k)A(n, k − 1) + A(n, k), k = 0, 1, 2, . . . , [(n + 1)/2] (5)

with A(n,−1) = 0. In fact, expression (4) was found by solving (5).

Lemma 1. For n = 0, 1, 2, . . . one has

(xD)n =
[n/2]∑
k=0

A(n, k)xn−2kDn−k. (6)

Proof. We proceed by induction. Relation (6) is easily seen to hold true for n = 0, 1. Suppose
(6) is valid for some n > 0. Then

(xD)n+1 = (xD)

[n/2]∑
k=0

A(n, k)xn−2kDn−k

=
[n/2]+1∑

k=0

(n + 2 − 2k)A(n, k − 1)xn+1−2kDn+1−k +
[n/2]∑
k=0

A(n, k)xn+1−2kDn+1−k, (7)

where in the sum in the second line of (7) k has been replaced by k − 1 and the term k = 0,
which is 0, has been added.

Now, if n is even, [n/2] = [(n + 1)/2] and the term k = [n/2] + 1 in the sum in the second
line of (7) vanishes due to the factor n + 2 − 2k. If n is odd, [n/2] + 1 = [(n + 1)/2] and
we add the term k = [n/2] + 1 to the sum in the third line of (7); this term vanishes because
A(n, (n + 1)/2) = 0. By use of the recurrence relation (5) in (7), thus modified, we find

(xD)n+1 =
[(n+1)/2]∑

k=0

A(n + 1, k)xn+1−2kDn+1−k, (8)

in both cases of n even or odd. This completes the proof of relation (6) for all n = 0,

1, 2, . . .. �

Lemma 2. For n = 0, 1, 2, . . . one has

(1 − xD)n =
n∑

m=0

(
n

m

)
(−1)n−mxn−m

[m/2]∑
k=0

A(m, k)Dn−m+k. (9)

Proof. By the binomial theorem

(1 − xD)n =
n∑

l=0

(
n

l

)
(−1)l(xD)l,

so, by lemma 1,

(1 − xD)n =
n∑

l=0

n!

(n − l)!
(−1)l

[l/2]∑
k=0

(2k − 1)!!

(2k)!(l − 2k)!
xl−2kDl−k,

where the binomial coefficients have been written out explicitly.
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Next, we re-arrange the sum in terms of m = l − 2k and k to find

(1 − xD)n =
n∑

m=0

(
n

m

)
(−1)mxm

[(n−m)/2]∑
k=0

A(n − m, k)Dm+k,

which on replacing m by n − m gives (9). �

Proof of theorem. We first note that [1, form 3.71(1)]

Kn−1/2(z) − 2n − 3

z
Kn−3/2(z) = Kn−5/2(z)

giving

fn(z) − (2n − 3)fn−1(z) = z2fn−2(z). (10)

On the one hand, from lemma 2 and the first formula (2) we have

(1 − xD)nfn(z) =
n∑

m=0

(
n

m

)
xn−mSm(z)

with

Sm(z) =
[m/2]∑
k=0

(−1)kA(m, k)fm−k(z). (11)

On the other hand,

(x + z)nf0(z) =
n∑

m=0

(
n

m

)
xn−mzmf0(z).

Therefore, we must show that

Sm(z) = zmf0(z), for m = 0, 1, 2, . . . . (12)

The latter relation is easily verified for m = 0, 1.
For m � 2 we have

A(m, k) − A(m − 2, k) = (2m − 2k − 1)A(m − 2, k − 1).

Inserting this into (11) we find

Sm(z) =
[(m−2)/2]∑

k=0

(−1)kA(m − 2, k)fm−k(z)

+
[m/2]∑
k=0

(−1)k(2m − 2k − 1)A(m − 2, k − 1)fm−k(z).

In the second sum we replace k by k + 1 and obtain

Sm(z) =
[(m−2)/2]∑

k=0

(−1)kA(m − 2, k)[fm−k(z) − (2m − 2k − 3)fm−k−1(z)],

which, by means of (10), simplifies to

Sm(z) = z2
[(m−2)/2]∑

k=0

(−1)kA(m − 2, k)fm−k−2(z) = z2Sm−2(z).

Consequently, (12) follows by iteration, which completes the proof of the theorem. �
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Discussion

By replacing z by −iz in (3) it follows that for the spherical Hankel functions

gn(z) = zn−1/2H
(1)
n−1/2(z) (13)

one has the differentiation formula

(1 + yD)ngn(z) = (y − iz)ng0(z), (14)

with y = √
a2 − z2 and a arbitrary.

As an application of (3) we present an evaluation of the integral

In =
∫ ∞

0
cos(ax − n arctan x)Kn

(
u
√

1 + x2
)

dx. (15)

Starting from [1, form 13.47(2) with µ = −1/2, ν = n] expressed in the form

Jn =
∫ ∞

0
cos(ax)

Kn

(
u
√

1 + x2
)

(1 + x2)n/2
dx =

√
π

2
u−nfn

(√
u2 + a2

)
, (16)

we have

In = 1

2

∫ ∞

−∞
(1 − ix)n eiax

Kn

(
u
√

1 + x2
)

(1 + x2)n/2
dx

=
(

1 − ∂

∂a

)n

Jn =
√

π

2
u−n

(
1 − ∂

∂a

)n

fn

(√
u2 + a2

)
. (17)

If we now write z =
√

u2 + a2, then ∂/∂a = aD and by (3)

In =
√

π

2
u−n(a + z)nf0(z) = π

2

(
a +

√
u2 + a2

u

)n
e−

√
u2+a2

√
u2 + a2

. (18)

The integral In appears, in various forms, in diffraction theory and other areas; see [2, 3]. The
evaluation in [3], which is believed to be the earliest one, is more complicated.
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